Cadmore End

Primary School
 Calculations

Policy
 May 2021

Year 1-6

Introduction and rationale

The Cadmore End calculations policy has been written in conjunction with the Hamilton trust scheme adopted by the school in 2020. https://www.hamilton-trust.org.uk/maths/

The idea of this policy is to promote consistency throughout the whole school and strengthen assessment practise in maths. This whole-school strategy will continue to strengthen pupil's own learning and assessment results.

Having a clear and consistent curriculum strategy throughout our school enables teachers to ensure that children are hearing consistent language and using progressive methods that build from one year to the next.

Our whole school approach facilitates teacher communication about objectives, assessment and children's achievement in every year group.

Calculation Strategies

Hamilton's calculation strategies set out methods of mental and written methods for addition, subtraction, multiplication and division from Year 1 through to Year 6. Articulated for each year group, these methods ensure consistency of teacher input and progression in pupil learning. They spell out the steps that children need to take to master these four operations. By ensuring that the language is pedagogically correct, the strategy helps promote understanding in Key Stage 1, while laying the correct building blocks for understanding with greater sophistication in Key Stage 2.

This policy enables teachers and pupils to easily see how one year builds on from another. Teachers have layout models that are clear and mathematically correct so that children do not build up misconceptions through their early years that they will need to unpick later.

Addition/Subtraction Calculation Strategy

The addition/subtraction calculation strategy covers place value and its use in mental and written addition and subtraction from Year 1 through to Year 6. Counting on, counting up, number facts and compact and expanded column addition are progressively described and illustrated.

Addition and subtraction are inverse operations. Right from the start children are taught these as related operations. There are four number sentences (two using + and two using -) which can be written to express the relationship between 4 and 6 and 10. It is key to a good
understanding of addition and subtraction that $6+[]=10$ and $10-6=[]$ are seen as ways of expressing the same question.

Multiplication/Division Calculation Strategy

The multiplication/division calculation strategy covers mental and written multiplication and from Year 1 through to Year 6. Clever counting, grouping, doubling and halving, grid multiplication and short and long written division are progressively described and illustrated.

Multiplication and division are inverse operations. Right from the start children are taught these as related operations. There are four number sentences (two using x and two using : which can be written to express the relationship between 5 and 9 and 45 . It is key to a good understanding of division that [] $\times 5=45$ and $45 \div 5=$ [] are seen as ways of expressing the same question.

Year 1

Year 2

- Subtraction

Using place value

Know 1 less or 10 less than any number, e.g. 1 less than 74 or 10 less than 82.
Partitioning, e.g. 55-32 as 50-30
 answers: $20+3$

Bead strings and 1-100 number grid help counting

 on/back in tens.

Addition

Using place value

Know 1 more or 10 more than any number, e.g. 1 more than 67 or 10 more than 85

Partitioning, e.g. $55+37$
as $50+30$ and $5+7$
finally combining the two
totals: $80+12$.

Counting on
Add ten and mupltiples of ten, e.g. $76+20$ as $76,86,96$ or in one hop $76+20$. Add two 2 -digit numbers by counting on in tens and then in ones, e.g $55+37$ as 55 add 30 (85) add 7 (92).

Add near multiples, e.g. $46+19$ or $63+21$.
Using number facts
Know pairs of numbers which make the numbers up to and including 10 .
e.g $8=4 \& 4,3 \& 5,2 \& 6,1 \& 7$ and $10=5 \& 5,4 \& 6,3 \& 7,2 \& 8,1 \& 9,0 \& 10$.

Patterns of known facts, e.g. $6+3=9$, so we know $36+3=39$.
$66+3=69.53+6=59$.
Bridging ten, e.g. $57+5$ as 57 add 3 then add 2 more.

Iaking away

Subtract ten and multiples of ten, eg. 76-20 as 76, 66, 56 or in one hop $76-20=56$. Subtract two 2 -digit numbers by counting back in tens then in ones, eg. 67-33 as 67 subtract 30 (37) then count back 3 (34).

Subtracting near multiples, e.g. 74-21 or 57-19.

Using number facts

Know pairs of numbers which make the numbers up to and including 10 .
e.g. $10-6=4,8-3=5,5-2=3$, etc.

Patterns of known facts, e.g. $9-6=3$, so we know 39-6=33, $69-6=63$.

Adding three or more single-digit numbers, spotting bonds to 10 or doubles, eg $6+7+4+2$ as $10+7+2$.
$89-6=83$

Bridge ten, e.g. 52-6 as 52 subtract 2 then subtract 4 more

Counting up

Find a difference between two numbers on a line, eg. 51-47

x Multiplication

Counting in steps ['Clever' countingl
Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .

Begin to count in 3s.

Doubling and halving

Begin to know doubles of multiples of 5 to 100 .
e.g. double 35 is 70 .

Grouping

Use arrays to find answers to multiplication and relate to 'clever' counting,
e.g. 3×4 as three lots of four things and 6×5 as six steps in the 5 s count as well as six lots of five.

Understand that 5×3 can be worked out as three 5 s or five 3 s.

Use number facts

Know doubles to double 20
Double $7=14$

Start learning $2 \mathrm{x}, 5 \mathrm{x}, 10 \mathrm{x}$ tables, relating these to 'Clever counting' in $2 \mathrm{~s}, 5 \mathrm{~s}$, and 10 s , eg $5 \times 10=50$, and $10,20,30,40,50$ is five steps in the tens count.

Doubling and halving

Find half of numbers up to 40 , including realising that half of an odd number gives a remainder of 1 or an answer containing a $1 / 2$.
Begin to know half of multiples of 10 to 100 , e.g. half of 70 is 35

Grouping

Relate division to multiplication by using arrays of towers of cubes to find anwers to division, e.g. how many towers of five cubes can I make from 20 cubes as $\square \times 5=20$ and also as $20 \div 5=$?

$\square \square \square \square \square|\square \square \square \square \square| \square \square \square \square \square|\square \square \square \square| \square \square \square \square \square \square \square \square \square$

Relate division to 'clever' counting and hence to multiplication, e.g. how many 5 s do $/$ count to get to 20?

Sharing

Begin to find half or a quarter of a quantity using sharing. e.g. $1 / 4$ of 16 cubes by sorting the subes into four piles.
Find $1 / 4,1 / 2,3 / 4$ of small quantities.

Using number facts

Know halves of even numbers to 24.
Know $2 \mathrm{x}, 5 \mathrm{x}$ and 10 x division facts.
Begin to know $3 x$ division facts.
half of 20 is...

20	
$?$	$?$

Year 3

Year 4

Addition

Using place value
Count in thousands, e.g. knowing $475+200$ as $475,575,675$.
Partitioning, e.g. $746+203$ as $700+200$ and $46+3$
or $134+707$ as $130+700$ and $4+7$.

Counting on

Add 2-digit numbers by adding the multiple of ten then
the ones, e.g. $67+55$ as 67 add 50 (117) add 5 (122).
Add near multiples of 10,100 and 1000 , eg. $467+199$ or $3462+2999$.

Count on to add 3-digit numbers and money. e.g. $463+124$ as $463+100(563)+20(583)+4=587$ or $£ 4.67+£ 5.30$ as $£ 9.67$ add 30 p.

Using number facts

Number bonds to 100 and to next multiple of 100 .
e.g. $463+37,1353+47$.

Subtraction

Taking away

Use place value to subtract, e.g. 4748-4000 or 4748-8, etc.
Take away multiples of $10,100,1000, £ 1,10$ p or 0.1 , e.g. $8392-50$ or 6723-3000 or £3.74-30p or 5.6-0.2.

Partioning. e.g. $£ 5.87-£ 3.04$ as $£ 5-£ 3$ and $7 p-4 p$ or $7493-2020$ as 7000-2000 and 90-20.

Count back, e.g. 6482-1301 as 6482-1000, then - 300, then -1 (5181). Subtract near multiples, e.g. 3522-1999 or $£ 34.86-£ 19.99$.

Counting up

Find a difference between two numbers by counting up from the smaller to the larger, e.g. 506-387.

$100+10+6+3-119$

Using number facts

Number bonds to 10, 100 and derived facts.
e.g. $100-76=24,1.0-0.6=0.4$.

Number bonds to $£ 1$ and to the next whole pound. e.g. $£ 3.45+55$ p.

Add to the next whole number, e.g. $4.6+0.4$ or $7.2+0.8$.

100	
76	24

Number bonds to $£ 1$ and $£ 10$. e.g. $£ 1.00-86 p=14$ p or $£ 10-£ 3.40=£ 6.60$.

+ Written Addition

Build on expanded column addition to develop compact column addition with larger numbers.

1000	400	60	8
4000	800	60	6
1000	100	10	
6000	300	30	4

- Written Subtraction

Expanded column subtraction. Begin to use column subtraction.

600	110	16				
700	20	6				
-300	50	8				
300	60	8	r	6	11	16
---:	---:	---:				

Compact column addition with larger numbers.

5347
2286
+1495
121
9128

Use counting up subtraction to find change from $£ 10, £ 20, £ 50$ and $£ 100$, e.g. £100-£73.60.

Use expanded and compact column addition to add amounts of money e.g $£ 3.24+£ 2.58$.

Subtract like fractions, e.g. $3 / 8-1 / 8=2 / 8$.

Add like fractions, e.g. $3 / 8+1 / 8+1 / 8$.

x Multiplication

Counting in step: (sequenceal
Count in $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}, 7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}, 10 \mathrm{~s}, 11 \mathrm{~s}, 12 \mathrm{~s}, 25 \mathrm{~s}, 50 \mathrm{~s}, 100 \mathrm{~s}$ and 1000 s .

Doubling and halving

Find doubles to double 100 and beyond using partitioning.
e.g. double 226

Begin to double amounts of money.
e.g. $£ 3.50$ doubled is $£ 7$.

Use doubling as a strategy in multiplying by 2,4 and 8 .
e.g. $34 \times 4=$ double 34 (68) doubled again (136).

Grouping

Use partitioning to multiply 2 -digit numbers by single-digit numbers
Multiply multiples of 100 by single-digit numbers using tables facts.
e.g. $400 \times 8=3200$.

Multiply using near multiples by rounding. e.g. 24×19 as $(24 \times 20)-24$

Using number facts

Know times tables up to 12×12.

Division
Counting in step: (sequences)
Count in $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}, 7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}, 10 \mathrm{~s}, 11 \mathrm{~s}, 12 \mathrm{~s}, 25 \mathrm{~s}, 50 \mathrm{~s}, 100 \mathrm{~s}$ and 1000 s

Doubling and halving
Find halves of even numbers to 200 and beyond using partitioning

344	
172	172

Begin to half amounts of money, e. $£ 9$ halved is $£ 4.50$
Use halving as a strategy in dividing by 2,4 and 8 . eg $164+4$ is half of 164 (82) halved again (41).

Grouping

Use multiples of 10 times the divisor to divide by numbers <9 above the tables facts, e.g. $45+3$

Divide multiples of 100 by single-digit numbers using division facts. e.g. $3200+8=4000$.

Using number facts

Know times tables up to 12×12 and all related division facts.
Use division facts to find unit and non-unit fractions of amounts within the times tables, e.g. $7 / 8$ of 56 is $7 \times(56+8)$.

Year 5

Counting on

Add two decimal numbers by adding the ones then the tenths/hundredths, e.g. $5.72+3.05$ as 5.72 add 3 (8.72) then add 0.05 (8.77).

Add near multiples of 1 , e.g. $6.34+0.99$ or $5.63+0.9$.

Count on from large numbers, e.g. $6834+3005$ as $9834+5$.
Using number facts
Number bonds to 1 and to the next whole number, e.g. $0.4+0.6$ or $5.7+0.3$

Add to the next ten from a decimal number. e.g. $7.8+2.2=10$.

Knowledge of number bonds underpins mental stratgegies.

Subtraction

Iaking away

Using place value to subtract decimals, e.g. 4.58-0.08 or 6.26-0.2, etc Take away multiples of powers of 10, e.g. 15, 672-300 or 4.82-2 or 2.71-0.5 or 4.68-0.02.

Partition or count back, eg. 3964-1051 or 5.72-2.01.
Subtract near multiples, e.g. 86,456-9999 or 3.58-1.99.

Counting up

Find a difference between two numbers by counting up from the smaller to the larger, e.g. 2009-869.

$$
1000+100+31+9-1140
$$

Find change using shopkeepers' addition, e.g. buy toy for $£ 6.89$ using $£ 10$.

Using number facts

Derived facts from number bonds to 10 and 100, e.g. $2-0.45$ using $45+55=$ or 100 or $3.00-0.86$ using $86+14=100$.

Written Addition

Expanded column addition for money leading to compact column addition for adding several amounts of money.

£14	60p	4p
£28	70p	8p
+£12	20p	6p
£1	10p	
£55	60p	8p

Compact column addition to add pairs of 5 -digit numbers.
Continue to use column addition to add towers of several larger numbers.
Use compact addition to add decimal
numbers with up to two places.
15.68
$+27.86$
11.1
$\underline{43.54}$

Adding fractions with related denominators, e.g. $1 / 4+3 / 8=5 / 8$.

Written Subtraction

Compact column subtraction for numbers with up to 5 digits, e.g. 16,324-8516.

0	15	13	1	14
$-X$	6	z	2	4
	8	5	1	6
7	8	0	8	

Continue to use counting up subtraction for subtractions involving money. including finding change or, e.g. $£ 50-£ 28.76$.

Use counting up subtraction to subtract decimal numbers, e.g. $4.2-1.74$.

x Multiplication

Doubling and halving

Double amounts of money using partitioning.
e.g. $£ 6.73$ doubled is double $£ 6$ ($£ 12$) plus
double 73p ($£ 1.46$)
Use doubling and halving as a strategy in multiplying by $2,4,8,5$ and 20 .
e.g. $58 \times 5=1 / 2$ of 58 (29) $\times 10$ (290).

Grouping
Multiply decimals by 10, 100, 1000 . e.g. $3.4 \times 100=340$.

Use partitioning to multiply friendly 2 -digit and 3 -digit numbers by single-digit numbers, e.g. 402×6 as 400×6 (2400) and 2×6 (12).
Use partitioning to multiply decimal numbers by
single-digit numbers, e.g. $4.5 \times 3(4 \times 3)+(4 \times 0.5)$
Multiply using near multiples by rounding.
og $32 \times 29 \mathrm{ax}(32 \times 30)-32$

\div Division

Doubling and halving
Halve amounts of money using partitioning. e.g. half of $£ 14.84$ as half of £ 14 and half of 84 p.

Learning times tables Learning times tables
involves BOTH multiplication and division facts.

Use doubling and halving as a strategy in dividing by 2, 4, 8, 5 and 20 . e.g. $115+5$ as double $115(230)+10$.

Grouping

Divide numbers by $10,100,1000$ to obtain decimal answers with up to three places, e.g. $340+100=3.4$.
Use the 10 th, 20 th, 30 th... multiple of the divisor to divide friendly 2 -digit and 3 -digit numbers by single-digit numbers, e.g. $186+6$ as $30 \times 6(180)$ and $1 \times 6(6)$.

Find unit and non-unit fractions of large amounts, e.g. $3 / 5$ of 265 is $3 \times(265+5)$.

Using number fact:
Use division facts from the times tables up to 12×12 to divide mutiples of powers of ten of the divisor, e.g. $3600+9$ using $36+9$.

Using number facts

Use times tables facts up to 12×12 to multiply multiples of the multiplier. eg. $4 \times 6=24$ so $4 \times 6=240$ and $400 \times 6=2400$
Know square numbers and cube numbers.

x Written Multiplication

\div Written Division

Short multiplication of 2-digit, 3-digit and 4-digit numbers by 1-digit numbers.

$$
\begin{array}{r}
387 \\
\times \quad 6 \\
\hline 54 \\
\hline 2322
\end{array}
$$

Written version of a mental strategy for 3 -digit +1 -digit numbers.

$$
\begin{array}{r}
387 \\
\times \quad 14 \\
\hline 3870 \\
1542 \\
11 \\
\hline 5418 \\
\hline
\end{array}
$$

Grid multiplication of numbers with up to 2 decimal places by single-digit numbers.
£8.65 x 7

	$£ 8$	$60 p$	$5 p$
$\mathrm{x7}$	$£ 56$	$£ 4.20$	35 p

$\square \times 6$	$=326$	$326+6=54$ r 2
50×6	$=\frac{300}{26}$	
4×6	$=\underline{24}$	2
54	r 2	

Short divison of 3-digit and 4-digit numbers by single-digit numbers.

$$
\begin{gathered}
1264 \\
6 \longdiv { 7 \frac { 1 } { 5 } 8 \frac { 2 } { 4 } }
\end{gathered}
$$

Visual images are essential to multiplying and dividing fractions.

NB: Grid multiplication provides a default method for ALL children.

Multiplying fractions by single-digit numbers, e.g. $1 / 4 \times 6=1 / 4$ which is
$4 \% / 4=41 / 2$

Year 6

x Multiplication

Division

Doubling and halving
Double decimal numbers with up to 2 -places using partitioning. e.g. 36.73 doubled is double 36 (72) plus double 0.73 (1.46).

Use doubling and halving as strategies in mental multiplication.

Doubling and halving
Halve decimal numbers with up to 2 -places using partitioning.
e.g. half of 36.86 if half of $36(18)$ plus half of $0.86(0.43)$

Understanding how to partition

 numbers underpins many calculation strategies.
Grouping

Use partioning as a strategy in mental multiplication, as appropriate, e.g. 3060×4 as $(3000 \times 4)+(60 \times 4)$ or 8.4×8 as $8 \times 8(64)$ and 0.4×8 (3.2)
Use factors in mental multiplication.
e.g. 421×6 as 421×3 (1263) doubled (2526) or 3.42×5 as half of 3.42×10.

Mutliply decimal numbers using near multiples by rounding.

Using number facts

Use times tables facts up to 12×12 in mental multiplication of large numbers or numbers with up to two decimal places,
e.g. $6 \times 4=24$ and $0.06 \times 4=0.24$.

Use doubling and halving as strategies in mental division, e.g. $216+4$ is half of 216 (108) and half of 108 (54).

Grouping

Use 10th, 20th, 30th, ... or 100th, 200th, 300th... multiples of the divisor to divide large numbers, e.g. $378+9$ as $40 \times 9=360$ and $2 \times 9=18$ so, the answer is 42
Use test for divisibility, e.g. 135 divides by 3 as $1+3+5=9$ and 9 is in the $3 x$ table.
e.g. 4.3×19 as $4.3 \times 20(86-4.3)$.

Using number facts

Use division facts from the times tables up to 12×12 to divide decimal numbers by single-digit numbers, e.g. $1.17+3$ is $1 / 100$ of $117+3$ (0.39).

